

Plenoptic Cameras for Localization in Challenging Weather Conditions

Mathieu Labussière¹, Céline Teulière¹, Frédéric Bernardin² and Thierry Chateau¹

¹Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France, ²Cerema Direction Centre-Est, F-63017 Clermont-Ferrand, France.

Micro-Lenses Array (MLA) based Plenoptic Cameras

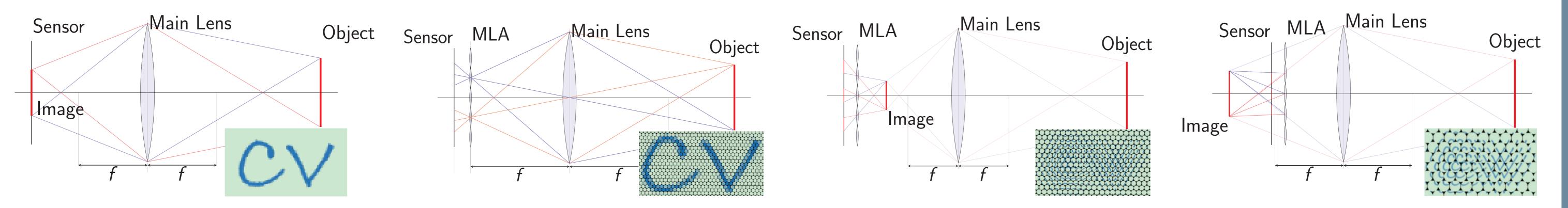
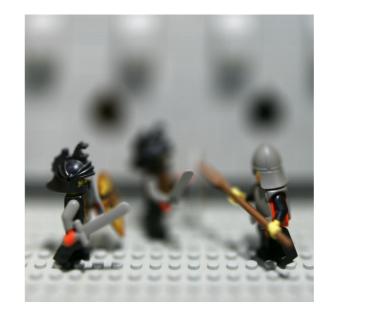
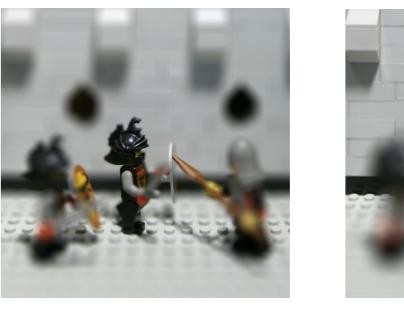


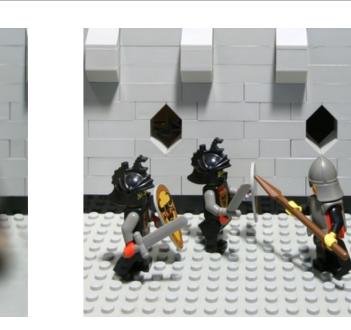
Figure 1: Comparison of optical design of a classic camera and plenoptic cameras. From *left* to *right*: classic camera, unfocused design (1.0), Keplerian design (2.0), and Galilean design (2.0).

Objectives

Plenoptic cameras capabilities


- 1. Improve the robustness and simplicity of computer vision in field robotics applications (*autonomous vehicles, drones, industrial manipulations, etc.*).
- 2. Investigate the use of a new type of passive vision sensor called a *plenoptic camera* in these applications.
- 3. Develop a localization algorithm (*Structure-from-Motion* (SfM), *Visual Odome-try* (VO), *SLAM*, etc.) using a plenoptic camera to work in challenging weather conditions.


Context & Motivation


- In context of field robotics applications, challenging weather conditions (especially, dust, rain, fog, snow, murky water and insufficient light) can cause even the most sophisticated vision systems to fail.
- The robustness is usually addressed by the use of other sensors (*Lidar*, *radar*, *GPS*, *IMU*, etc.). But such sensors, usually active, suffer from interference. Contrarily, camera, which is a passive sensor, does not suffer from inter-sensor interference.

Imaging System

The purpose of an imaging system is to map incoming light rays r from the

Figure 4: Post-capture refocusing and total focus reconstruction

Figure 5: Depth map

Figure 6: Occlusion management

Plenoptic cameras in field robotics applications

- Taking inspiration from bio-compound-eyes, Neumann et al. established the formalism for the plenoptic-based motion estimation.
- During his thesis, Dansereau used the plenoptic function to achieve real-time navigation, introducing three distinct closed-form solutions to extract the mo-

scene onto pixels p_i of the photo-sensible detector. Each pixel collects radiance \mathcal{L} from a bundle of closely packed rays in a non-zero aperture size system.

- The radiance is given by the *plenoptic function* $\mathcal{L}(\mathbf{x}, \boldsymbol{\theta}, \lambda, \tau)$ [1] where:
- $\triangleright x$ is the *spatial* position of observation in space,
- \triangleright θ is the *angular* direction of observation in space,
- $\triangleright~\lambda$ is the frequency of the light and τ is the time.
- Imaging systems allow to capture only a part of this function:

Sensors	Spatial (x)	Angular (θ)	Temporal (τ)
classic camera	\checkmark	_	_
video camera	\checkmark	-	\checkmark
plenoptic cameras	\checkmark	\checkmark	_
plenoptic video cameras	\checkmark	\checkmark	\checkmark

How to acquire the plenoptic function?

From Lumigraph [2] to commercial plenoptic cameras [3, 4], several designs have been proposed to capture the plenoptic function.

Multi-sensors	Sequential	Multiplexing
camera array	gantry, coded aperture	micro-lenses array (MLA)

tions parameters from the plenoptic function.

- At the same period, Dong et al. gave a complete scheme to design usable real-time plenoptic cameras for mobile robotics applications.
- Zeller et al. adapted a SLAM formulation to deal with plenoptic information. Derived from their calibration model, they proposed a visual odometry framework, later improved with scale information.
- More recently, Hasirlioglu and al. investigated the potential of plenoptic cameras in the field of automotive safety.

Roadmap

- ► By taking into account blur information and the multi focal lengths:
 - ▷ Propose a new model and calibration procedure (*in progress*).
 - ▷ Develop a new approach to generate more precise depth map.
- Propose a probabilistic plenoptic-based Structure-from-Motion (SfM) approach.
- Create a *dataset* of plenoptic images captured from a vehicle under different weather conditions.

Conclusion

Plenoptic cameras capture rich information about a scene (*spatial* and *angular*

Figure 2: Lytro Illum camera [3]

Figure 3: Raytrix R12 camera [4]

information). Given a single snapshot, a 3D representation of a scene can be passively created. With more information the robustness of localization algorithm is improved, especially during challenging weather conditions.

Acknowledgments

This work has been sponsored by the AURA Region and the European Union (FEDER) through the MMII project of CPER 2015-2020 MMaSyF challenge.

Main References

- 1] E. H. Adelson and J. R. Bergen. "The plenoptic function and the elements of early vision". In: *Computational Models of Visual Processing* (1991), pp. 3–20.
- [2] Gabriel Lippmann. "Integral Photography". In: Academy of the Sciences (1911).
- [3] Ren Ng et al. Light Field Photography with a Hand-held Plenoptic Camera. Tech. rep. Stanford University, 2005, pp. 1–11.
- [4] Christian Perwaß, Lennart Wietzke, and Raytrix Gmbh. "Single Lens 3D-Camera with Extended Depth-of-Field". In: 49.431 (2010).

JS-EDSPI 2019 - Journée Scientifique de l'École Doctorale Sciences Pour l'Ingénieur (UCA)

mathieu.labussiere@uca.fr